TABLE OF CONTENTS
Title Page i
Certificate ii
Dedication iii
Acknowledgment iv
Table of Contents vi
List of Tables ix
List of Figures x
List of Plates xi
Abstract xii
CHAPTER ONE:
INTRODUCTION
1.1 Introduction
1
1.2 Aims and
Objective of the Project 3
1.3 Justification
of the Study 4
1.4 Scope of
the Project 4
1.5 Proposed
Methodology 5
CHAPTER TWO:
2.0. Literature Review
2.1 Preamble 6
2.2 Structure
of Interlocking Paving Blacks 7
2.3 Various
shapes of Interlocking Paving Blocks 10
2.4 Laying
Patterns 13
2.5 Manufacturing of Interlocking Paving Blocks 16
2.6
Materials Involved 17
2.6.1
Granite (Stone Dust) 17
2.6.2
Cement 18
2.6.3 Interlocking Stone
Treatment after Production 20
2.6.4 Water 20
CHAPTER THREE
3.1 Procurement of the material components 22
3.2 Equipment used in interlocking paving stone
production
22
3.3 Mix Ratio 23
3.4 Determination of the Quantities of Materials 24
3.5 Sieve Analysis
of the Material 24
3.6 Experimental Tests 25
3.6.1 Compressive strength
test 25
3.6.2 Flexural Strength Test 26
CHAPTER
FOUR
4.0. Analysis
of Result and Discussion 29
4.1. Material
Tests Performed on the Materials and
Samples 29
4.2. Material
Tests 29
4.3.
Determination of Quantity of Materials 30
CHAPTER FIVE:
5.0. Conclusions
and Recommendations 38
5.1 Conclusions 38
5.2 Recommendation 39
References 40
LIST OF TABLES
Table 4.1: Composition of Constituent Material Per
Each Shape 32
Table 4.2: Sieve Analysis Result for Quarry Dust 33
Table 4.3: A Compressive strength result for the interlocking
paving stones 34
Table
4.4: Flexural strength properties of
interlocking paving
blocks produced in
laboratory 35
Table
4.5: Showing Flexural Strength
properties of interlocking
paving blocks produced in
laboratory 35
Table
4.6: Showing Flexural strength properties of interlocking
paving blocks produced in laboratory 36
Table:
4.7: Showing Flexural strength
properties of interlocking
paving blocks produced in
laboratory 36
Table:
4.8: Showing Flexural strength
properties of interlocking
paving blocks produced
in laboratory 37
LIST OF FIGURES
Fig 2.1a: Small
element pavement structure 8
Fig 2.1b: Load
spreading in the small element top
layer through shear
forces in the joints 8
Fig 2.3a: Categories
of Block shapes 11
Fig 2.4a: Types
of laying patterns for concrete tiles 14
Fig 2.4b: Types
of laying patterns for burnt clay bricks
and concrete blocks 16
Fig 4.1: Particle
size distribution for quarry dust 43
LIST OF PLATES
Plate 1: Bubble Glover Interlock Tiles
Plate 2: Didalo Interlock Tiles
Plate 3: Double T Interlock Tiles
Plate 4: 3 Star Interlock Tiles
Plate 5: Land Roman Interlock Tiles
Plate 6A:
Crushing of the materials in progress
Plate 6B: Crushing of the materials
ABSTRACT
Interlocking paving stone is a good
surface material produce as a result of mixture of aggregate to produce a good
workability surface.
This research work investigates on how
the shapes affect the strength after production. The materials used include
cement, sharp sand, quarry dust or granite dust and water.
The structural engineering properties
investigated include compressive strength, flexural strength of each types of
interlocking paving stone produced that is 3 Star, Double T, Land Roman, Bubble
Glover and Didalo tiles respectively. The mix ratio of each stone was also
investigated as well as the rate of crushing of the paving stone were
noted.
So, from the
observation made from this project the average strength of the interlocking
paving stone was found to be 5.7gN/mm2 and the highest strength
received was found to be that of Bubble glover with a maximum strength of (6.39
N/mm2). While that of Double T (5.59N/mm2), 3 Star
(5.39N/mm2), Land Roman (5.30N/mm2) and Digalo (5.19N/mm2)
CHAPTER ONE
1.1
Introduction
Researchers have work on various materials for
paving and method of pavement construction that will provide adequate support
for traffic load with minimum construction cost and maintenance. The concept of
interlocking stone pavers dated back over 200years ago to the Roman empire where
over 800,000km of roads were built using interlocking paving blocks. The roman
developed a simple system for building roads some of the roads are still in use
today. The roads were constructed with a well compacted base of lime and gravel
covered with a tight fitting cut stone which produced an excellent and
economical roadway that remained virtually maintenance free in all types of
weather (Wilford, 1994).
The elements are laid directly on a bedding sand
layer with edge restraints to allow block layer to develop limited load
spreading capacity to keep bond together at great mass and strength (Wilford,
1994).
Investigation has not been intensified on the use of
paving stone for pavement unlike surface dressed concrete pavement structures.
The potential of different types of paving stone for pavement structure used as
car park or foot paths.
In developing countries paving stone are used for
the construction of paved area on a large scale. The material use in paving
stone are of different variety of colours and shapes which are most likely have
effect on the strength of the stone, they create unique and creative pattens
while providing a surface that is durable and functional (Akinyemi, et al,
1992).
It is observed that various shapes of these paving
stone are produced and widely used in our locality. These include: roman,
zenith, double T, 3 star etc. And the laying pattern include, stretcher,
running, digalo, bubble glover, diagonal, Herringbone and parquet bond but in
lieu of this, different materials and mix ratio are used in order to determine
various strength and durability of the
paving material. (Shackel, 1990).
Some use dust from quarry with sharp sand and
granite of specified size while others prefer using stone dust with granite
only but the most commonly used are dust from quarry only. During laying some
prefer placing the elements over a graded sand base and interlocked with
bedding and joint sand. The jointing sand allows the pavers to interlock and
structurally function as one durable layer while others use dust (Sambawa,
2010).
All those variations in materials and production
account for variations in properties, quality and strength and it is therefore
necessary to carry out a research work to know whether the shapes of the stone
has any effect on the strength.
1.2
Aim and Objectives of the Project
The aims of this project is to determine the
followings:
i.
To determine the
strength of the stone
ii.
To know whether
the shapes of the stone has any effect on the strength
iii.
To educate
student on what they can lay their hand on after graduation.
1.3
Justification of the Study
Due to the versatile indestructible nature of paving
stone or tiles, they have been used for about every conceivable application
such as residential and commercial garage floor etc. There is need for indepth
study of this interlocking paving stone as to why the sudden crack or breakdown
of the stone pavers.
1.4
Scope of the Project
The scope of this study include, the following:
·
The use of
cement, quarry sand, sharp sand and water for the production of the
interlocking paving stone.
·
The mix ratio
used in this project is ratio 1:4 to produce a certain no of interlocking stone
of various shapes these are Roman, 3 star, double T, Bubble Glover and Didalo
tiles were used as an example in the project
·
Also the various
laboratory test carried out in this project are compressive strength test,
flexural strength, particle size distribution or sieve analysis.
1.5
Proposed Methodology
To achieve the above aim and objectives of this
research work, the following steps were taken:
i.
Procurement of
materials
ii.
Preparation of
mould
iii.
Laboratory tests
on the materials
iv.
Production of
the interlocking paving stone
v.
Curing of the
stones
vi.
Determination of
the strengths
vii. Analysis of the results
Buyers has the right to create
dispute within seven (7) days of purchase for 100% refund request when
you experience issue with the file received.
Dispute can only be created when
you receive a corrupt file, a wrong file or irregularities in the table of
contents and content of the file you received.
ProjectShelve.com shall either
provide the appropriate file within 48hrs or
send refund excluding your bank transaction charges. Term and
Conditions are applied.
Buyers are expected to confirm
that the material you are paying for is available on our website
ProjectShelve.com and you have selected the right material, you have also gone
through the preliminary pages and it interests you before payment. DO NOT MAKE
BANK PAYMENT IF YOUR TOPIC IS NOT ON THE WEBSITE.
In case of payment for a
material not available on ProjectShelve.com, the management of
ProjectShelve.com has the right to keep your money until you send a topic that
is available on our website within 48 hours.
You cannot change topic after
receiving material of the topic you ordered and paid for.
Login To Comment